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with individual atoms. In certain other semiconductors, such as doped nickel
oxide (Chapters 6, 7), the band model appears not to be suitable since these
materials are best regarded as hopping semiconductors in which the electrons
do not have high mobility. Instead, it appears to be more appropriate to regard
the d electrons as occupying discrete orbitals on the nickel ions. It is important
to remember, however, that the question of conduction in nickel oxide refers to
only one or two sets of energy levels. NiO, like all materials, has many sets of
energy levels. The lower lying levels are full and are discrete levels associated
with the individual anions and cations. At higher energy various excited levels
are usually completely empty but may overlap to form energy bands. In asking
whether or not a bond or band model is the most suitable, one has to be clear
about the particular property or set of energy levels to which the question
refers. Thus many ionically bonded solids may, under UV irradiation, show
electronic conductivity that is best described in terms of band theory.

Chapter 3
Crystallography and Diffraction Techniques

3.1 General comments: molecular and non-molecular solids

The simplest and most obvious first question to ask about an inorganic sub-
stance is “‘What is it?". The methods that are used to answer this come into two
main categories, depending on whether the substance is molecular or non-
molecular. If the substance is molecular, whether it be solid, liquid or gaseous,
identification is usually carried out by some combination of spectroscopic
methods and chemical analysis. If the substance is non-molecular and crystal-
line, identification is usually carried out by X-ray powder diffraction supple-
mented, where necessary, by chemical analysis. Each crystalline solid has its
own characteristic X-ray powder pattern which may be used as a ‘fingerprint’
for its identification. The powder patterns of most known inorganic solids are
included in an updated version of the Powder Diffraction File (Section 3.3¢); by
using an appropriate search procedure, unknowns can usually be identified
rapidly and unambiguously.

Once the substance has been identified, the next stage may be to determine its
structure, if this is not known already. For molecular materials, details of the
molecular geometry may be obtained from further spectroscopic measure-
ments. Alternatively, if the substance is crystalline, X-ray crystallography
may be used, in which case information is also obtained on the way in which
the molecules pack together in the crystalline state. For molecular substances,
this usually completes the story as far as identification and structure deter-
mination are concerned; attention may then focus on other matters such as
properties or chemical reactivity.

For non-molecular substances, however, the word ‘structure’ takes on a
whole new meaning. Obviously, we need to know the crystal structure, as
given by the unit cell and its contents. However, defects and impurities are
also often extremely important and sometimes control properties. Thus, the
colour and lasing action of ruby, Cr-doped Al,O3, depend exclusively on the
presence of Cr** impurities in the corundum crystal structure of Al,O3. In such
cases, the crystal structure or average structure of the host is important but the
local structure centred on the impurities or defects controls the properties.

On a somewhat larger length scale, the optical properties of colloids (or
nanoparticles, to give them a name that is currently more fashionable) depend
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n crystallite size. For instance, the colour, band gap and photoconductivity of

“dS nanoparticles depend on the particle size and hence, on their nanostructure.

On a still larger scale, the mechanical and electrical properties of ceramics are
ften determined by the microstructure, which covers the size, shape and dis-
ribution of crystalline grains, the bonding between grains and the segregation
f any impurities to the surfaces or intergranular regions. To give one example,
’nO ceramic varistors are rather special materials whose electrical properties
lo not obey Ohm’s Law and this is associated with compositional inhomogene-
ties in the ceramic, in particular the segregation of dopants such as Bi and Co
o the intergranular regions.

When we refer to the structure of inorganic materials, we may be interested in
ome or all of the above aspects of structure, ranging from local structure, over
istances of a few angstroms (1 A = 0.1 nm = 10~*xm = 10~7 mm), to micro-
tructure at the micron level. This contrasts hugely with molecular substances
or which structure refers mainly to the atomic-level arrangement of atoms and
ccasionally, to the packing arrangement of molecules in crystals. Since in non-
10lecular materials we are interested in the structure at several levels, a wide
ange of techniques is needed to characterize the solids.

The prime reason for the great difference between molecular and non-
10lecular materials lies in the very different status of defects and impurities
1 the two categories of material. In molecular substances, defects are not
llowed! If a certain molecule has atoms missing, or extra atoms present, then
1e resulting molecule is quite different to the parent molecule and can be
parated by standard purification methods. Further, the presence of any
ich “defective’ molecules is most unlikely to modify the properties of the
arent, non-defective molecules. Thus, molecules have accurately fixed formu-
e or stoichiometries and are defect-free.

In non-molecular materials by contrast, defects and impurities are almost
navoidable. They cannot be readily eliminated and are always present from
iermodynamic considerations. Impurities give rise to non-stoichiometry, i.e.
iriable composition and may induce dramatic changes in properties of the
arent structure.

An illustration of the vastly different chemistries of molecular and non-
olecular substances is given in Table 3.1 for two apparently simple sub-
ances, one in each category. Molecular chemists will tell you that toluene is
1 extremely well-understood molecule and has few surprises left. Aluminium
ide, by contrast, shows a rich diversity of structures, properties and applica-
ons and is still being actively researched.

3.2 Characterization of solids
order for a solid to be well characterized, one needs to know about:

) the crystal structure, as given by the unit cell, its dimensions and the
fractional coordinates of the atoms present in the cell:
) the crystal defects that are present, their nature, number and distribution:
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Table 3.1 Comparison of a molecular substance, toluene, CollsCHy, and a non-molecular
substance, Al, O,

Toluene Alumina

Stoichiometry Fixed, C¢HsCHj3
Impurities? Not allowed
Nature of the material Volatile liquid

Fixed, AlgO;

Readily doped

Can be: powder, fibre, ceramic, single
crystal, film

Depend on the nature of the material
and dopants/impurities

Abrasive (powder), thermal insulator
(saffil fibres), electrical insulator (thin
film or ceramic substrate), ruby gem
and laser (Cr doped), solid electrolyte
(Na beta-alumina)

Properties

Applications Solvent

(c) the impurities that are present and whether they are distributed at random
or are concentrated into small regions;

(d) for polycrystalline solids—powders or ceramics—the number, size, shape
and distribution of the crystalline particles;

(e) the surface structure, including any compositional inhomogeneities,
absorbed surface layers or structural differences between surface and
interior.

No single technique is capable of providing a complete characterization of a
solid. Rather, a variety of techniques are used in combination. There are three
main categories of physical technique which may be used to characterize solids:
diffraction, microscopic and spectroscopic techniques. In addition, other tech-
niques such as thermal analysis and physical property measurements give
valuable information in certain cases. This chapter deals with diffraction tech-
niques; several of the other techniques are considered in Chapter 4.

X-ray diffraction has been used for nearly a century in two main areas, for
the fingerprint characterization of crystalline materials and for determination
of their structure. It is the principal technique of solid state chemistry and
accordingly, is given most space in this chapter. A brief description is also given
of electron and neutron diffraction, two rather specialized techniques which
have important applications.

3.3 X-ray diffraction

a) Generation of X-rays

X-rays are electromagnetic radiation of wavelength ~ 1 A (10~ %m). They occur
in that part of the electromagnetic spectrum between v-rays and the ultraviolet.
X-rays are produced when high-energy charged particles, e.g. electrons
accelerated through 30,000 V, collide with matter. The resulting X-ray spectra
usually have two components, a broad spectrum of wavelengths known as
white radiation and a number of fixed, or monochromatic wavelengths.
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White radiation arises when the electrons are slowed down or stopped by the
collision and some of their lost energy is converted into electromagnetic radia-
tion. White radiation has wavelengths ranging upwards from a certain lower
limiting value. This lower wavelength limit corresponds to the X-rays of highest
energy and occurs when all the kinetic energy of the incident particles is
converted into X-rays. It may be calculated from the formula, imin(A)
= 12400/ V', where V is the accelerating voltage.

The X-rays which are used in almost all diffraction experiments are produced
by a different process that leads to monochromatic X-rays. A beam of electrons,
again accelerated through, say, 30 kV is allowed to strike a metal target, often
Cu. The incident electrons have sufficient energy to ionize some of the Cu 1s (K
shell) electrons, Fig. 3.1(a). An electron in an outer orbital (2p or 3p) immedi-
ately drops down to occupy the vacant ls level and the energy released in the
transition appears as X-radiation. The transition energies have fixed values
and so a spectrum of characteristic X-rays results, Fig. 3.1(b). For Cu the
2p — ls transition, called Ka, has a wavelength of 1.5418 A and the 3p—ls
transition, K3, 1.3922 A. The K« transition occurs much more frequently than
the K/ transition and this more intense Ko radiation is used in dlffractlon
experiments. In fact, the Ko transition is a doublet, Koy = 1.54051 A and
Kay = 1.54433 A, because the transition has a slightly different energy for
the two possible spin states of the 2p electron which makes the transition,
relative to the spin of the vacant ls orbital. In some X-ray experiments,
diffraction by the K| and K« radiations is not resolved and a single line or
spot is observed instead of a doublet (e.g. in powder diffractometry at low
angle). In other experiments, separate diffraction peaks may be observed; if
desired, this can be overcome by removing the weaker Ko, beam from the
incident radiation.
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Fig. 3.1 (a) Generation of Cu Ka X-rays. A 1s electron is ionized; a 2p electron falls
into the empty ls level ((J) and the excess energy is released as X-rays. (b) X-ray
emission spectrum of Cu
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Table 3.2 X-ray wavelengths (A ) of commonly used target materials

Target Ko, Koy Ka' Filter
Cr 2.2896 2.2935 2.2909 \Y%

Fe 1.9360 1.9399 1.9373 Mn
Cu 1.5405 1.5443 1.5418 Ni
Mo 0.7093 0.7135 0.7107 Nb
Ag 0.5594 0.5638 0.5608 Pd

* a is the intensity-weighted average of o) and ay.

The wavelengths of the K« lines of the target metals commonly used for X-
ray generation are given in Table 3.2. They are related to the atomic number Z,
of the metal, by Moseley’s law:

A2 =c(Z-0) (3.1)

where C and o are constants. Hence the wavelength of the K« line decreases
with increasing atomic number.

The X-ray emission spectrum of an element such as Cu, Fig. 3.1(b), has two
main features. The intense, monochromatic peaks, caused by electronic transi-
tions within the atoms, have wavelengths that are characteristic of the element,
i.e. Cu. These peaks are superposed on a background of white radiation
produced by the general interaction of high-velocity electrons with matter. In
order to generate the characteristic monochromatic radiation, the voltage used
to accelerate the electrons needs to be sufficiently high (> 10 kV) that ionization
of the Cu ls electrons occurs.

In the generation of X-rays, Fig. 3.2, the electron beam, provided by a heated
tungsten filament, is accelerated towards an anode by a potential difference of
~ 30 kV. The electrons strike the target, a piece of Cu fixed to the anode, and a
spectrum of X-rays, such as shown in Fig. 3.1(b), is emitted. The chamber,
known as the X-ray tube, is evacuated to prevent oxidation of the W filament.
The X-rays leave the tube through ‘windows’ made of Be. The absorption of X-
rays on passing through materials depends on the atomic weight of the elements

Be
window
target. — W filament
e_ —
vacuum
X-rays

Fig. 3.2 Schematic design of a filament X-ray tube
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present. Be with an atomic number of 4 is, therefore, one of the most suitable
window materials. For the same reason, lead is a very effective material for
shielding X-ray equipment and absorbing stray radiation. While an X-ray tube
is in operation, continuous cooling of the anode is necessary. Only a small
fraction of the energy of the incident electron beam is converted into X-rays.
Most of the energy is converted into heat and the anode would soon melt if it
were not cooled.

For most diffraction experiments, a monochromatic beam of X-rays is
desired and not a continuous spectrum. In the spectrum of X-rays emitted by
Cu (or any metal), the K« line(s) is the most intense and it is desired to filter out
all other wavelengths, leaving the K« line for diffraction experiments. For Cu
radiation, a sheet of Ni foil is a very effective filter. The energy required to
ionize ls electrons of Ni corresponds to a wavelength of 1.488 A, which lies
between the values for the Ko and K/ lines of the Cu emission spectrum. Cu
K3 radiation, therefore, has sufficient energy to ionize ls electrons of Ni
whereas Cu K« radiation does not. Ni foil is effective in absorbing the Cu
K3 radiation and most of the white radiation, leaving a monochromatic,
reasonably clean beam of K« radiation. A lighter element, such as Fe, would
absorb Cu Ko radiation as well as K3, because its absorption edge is displaced
to higher wavelengths. On the other hand, a heavier element, such as Zn, would
transmit both K« and K73 radiations while still absorbing much of the higher-
energy white radiation. The atomic number of the element in the filter generally
is one or two less than that of the target material, Table 3.2. An alternative
method of obtaining monochromatic X-rays uses a single crystal monochro-
mator and is discussed later.

b) An optical grating and diffraction of light

As an aid to understanding the diffraction of X-rays by crystals, let us consider
the diffraction of light by an optical grating. This gives a one-dimensional (1D)
analogue of the 3D process that occurs in crystals. An optical grating is a piece
of glass on which have been ruled a large number of accurately parallel and
closely spaced lines. The separation of the lines is a little larger than the
wavelength of light, say 10,000 A. The grating is shown in projection as a
row of points in Fig. 3.3(a). Consider what happens to a beam of light which
hits the grating perpendicular to the plane of the grating. A piece of glass
without the lines would simply transmit the light, but in the grating the lines
act as secondary point (or, rather, line) sources of light and re-radiate light in
all directions. Interference then occurs between the waves originating from each
line source. In certain directions, adjacent beams are in phase with each other
and constructive interference occurs to give a resultant diffracted beam in that
direction. Two such directions are shown in (b). In direction 1, parallel to the
incident beam, the diffracted beams are obviously in phase. In direction 2, the
beams are also in phase although beam B is now exactly one wavelength behind
beam A. For directions between 1 and 2, B lags A by a fraction of one
wavelength, and destructive interference occurs. For a certain direction, 3, B is
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exactly half a wavelength behind A and complete destructive interference or
cancellation occurs. For other directions between 1 and 2, the destructive
interference is only partial. Thus, directions 1 and 2 have maximum light
intensity and this falls off gradually to zero as the angle changes to direction
3. In the optical grating, however, there are not just two parallel diffracted
beams A and B but several hundred or thousand, one for each line on the
grating. This causes the resultant diffracted beams to sharpen enormously after
interference so that intense beams occur in directions 1 and 2 with virtually no
intensity over the whole range of directions between 1 and 2.

The directions, such as 2, in which constructive interference occurs are
governed by the wavelength of the light, 4, and the separation, a, of the lines
on the grating. Consider the diffracted beams 1 and 2, Fig. 3.4, which are at an
angle, ¢, to the direction of the incident beam. If 1 and 2 are in phase, the
distance AB must equal a whole number of wavelengths; i.e.

AB=1,24,...,nl

(a) (b)

Fig. 3.3 (a) Lines on an optical grating act as secondary sources of light. (b) Con-
structive interference in directions 1 and 2

Fig. 3.4 Diffraction of light by an optical grating
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But

AB = a sing
Therefore,

asin ¢ = nl (3.2)

This equation gives the conditions under which constructive interference
occurs and relates the spacing of the grating to the light wavelength and
the diffraction order, #. Hence, depending on the value of asin ¢, one or more
diffraction orders, corresponding to n = 1,2, etc., may be observed.

We can now understand why the separation of lines on the grating must be of
the same order of magnitude as, but somewhat larger than, the wavelength of
light. The condition for the first-order diffracted beam to occur is a sin ¢ = A.
The maximum value of sin ¢ is 1, corresponding to ¢ = 90° but realistically, in
order to observe first-order diffraction, sin ¢ < 1 and, therefore, a > A. If
a < A, only the zero order direct beam is observable.

If, on the other hand, ¢ > /. individual diffraction orders (n = 12 R,
etc.) are so close together as to be unresolved and, effectively, a diffraction
continuum results. This is because, for large values of a, sin ¢ and, hence, ¢
must be very small. Therefore ¢n=1 > 0 and the first-order beam is not distin-
guishable from the primary beam. Visible light has wavelengths in the range
4,000 to 7,000 A and so, in order to observe well-separated spectra, grating
spacings are usually 10,000 to 20.000 A.

The other condition to be observed in the construction of an optical grating
is that the lines should be accurately parallel. If this were not so, ¢ would vary
over the grating and the diffraction spectra would be blurred or irregular and of
poor quality generally.

c) Crystals and diffraction of X-rays

By analogy with the diffraction of light by an optical grating, crystals,
with their regularly repeating structures, should be capable of diffracting
radiation that has a wavelength similar to interatomic separations, ~ 2-3 A.
Three types of radiation are used for crystal diffraction studies: X-rays, elec-
trons and neutrons. Of these, X-rays are the most useful but electron and
neutron diffraction also have important specific applications and are discussed
later. The X-ray wavelength commonly employed is the characteristic Ko
radiation, 2 = 1.5418 A, emitted by Cu. When crystals diffract X-rays, the
atoms or ions act as secondary point sources and scatter the X-rays; in
the optical grating, the lines scratched or ruled on the glass surface cause
scattering.

Historically, two approaches have been used to treat diffraction by crystals.
These are as follows.
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i) The Laue equations

Diffraction from a hypothetical 1D crystal, constituting a row of atoms, may be
treated in the same way as diffraction of light by an optical grating because, in
projection, the grating is a row of points. An equation is obtained which relates
the separation, a, of the atoms in the row, the X-ray wavelength, A, and the
diffraction angle, ¢: i.e.

asing = ni

A real crystal is a 3D arrangement of atoms for which three Laue equations
may be written:

aj Sin(b] =nl
a; singy = ni
as sings = nl

The equations correspond to each of the three crystallographic axes needed to
represent the atomic arrangement in the crystal. For a diffracted beam to occur,
these three equations must be satisfied simultaneously.

The Laue equations provide a rigorous and mathematically correct way to
describe diffraction by crystals. The drawback is that they are cumbersome to
use. The alternative theory of diffraction, based on Bragg’s law, is much
simpler and is used almost universally in solid state chemistry. No further
discussion of the Laue equations is given in this book.

ii) Bragg's law

The Bragg approach to diffraction is to regard crystals as built up in layers or
planes such that each acts as a semi-transparent mirror. Some of the X-rays are
reflected off a plane with the angle of reflection equal to the angle of incidence,
but the rest are transmitted to be subsequently reflected by succeeding planes.

The derivation of Bragg’s law is shown in F ig. 3.5. Two X- ray beams, 1 and
2, are reflected from adjacent planes, A and B, within the crystal and we wish to
know under what conditions the reflected beams 1’ and 2’ are in phase. Beam
22’ has to travel the extra distance xyz as compared to beam 11’, and for 1’ and
2" to be in phase, distance xyz must equal a whole number of wavelengths. The
perpendicular distance between pairs of adjacent planes, the d-spacing, d, and
the angle of incidence, or Bragg angle, 6, are related to the distance xy by

Xy = yz = dsinf
Thus

xyz = 2d sinf
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A
B
Fig. 3.5 Derivation of Bragg’s law
But
Xyz = ni
Therefore
2d sin® = ni  Bragg's law (3.3)

When Bragg’s law is satisfied, the reflected beams are in phase and interfere
constructively. At angles of incidence other than the Bragg angle, reflected
beams are out of phase and destructive interference or cancellation occurs. In
real crystals, which contain thousands of planes and not just the two shown in
Fig. 3.5, Bragg’s law imposes a stringent condition on the angles at which
reflection may occur. If the incident angle is incorrect by more than a few
tenths of a degree, cancellation of the reflected beams is usually complete.

For a given set of planes, several solutions of Bragg’s law are usually
possible, for n = 1,2, 3, etc. It is customary, however, to set n equal to 1 and
for situations where, say, n = 2, the d-spacing is instead halved by doubling up
the number of planes in the set: hence n is kept equal to 1. (Note that
2/ = 2dsind is equivalent to 1 = 2(d/2)sing.)

It is difficult to give an explanation of the nature of the semi-transparent
layers or planes that is immediately convincing. This is because they are a
concept rather than a physical reality. Crystal structures, with their regularly
repeating patterns, may be referred to a 3D grid and the repeating unit of the
grid, the unit cell, can be found. The grid may be divided up into sets of planes
in various orientations and it is these planes which are considered in the
derivation of Bragg’s law. In some cases, with simple crystal structures, the
planes also correspond to layers of atoms, but this is not generally the case.

Some of the assumptions upon which Bragg’s law is based may seem to be
rather dubious. For instance, it is known that diffraction occurs as a result of
interaction between X-rays and atoms. Further, the atoms do not reflect X-rays
but scatter or diffract them in all directions. Nevertheless, the highly simplified
treatment that is used in deriving Bragg’s law gives exactly the same answers as
are obtained by a rigorous mathematical treatment. We therefore happily use
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terms such as reflexion (often deliberately with this alternative spelling)
and bear in mind that we are fortunate to have such a simple and
picturesque, albeit inaccurate, way to describe what in reality is a very complic-
ated process.

d) X-ray diffraction methods

When reduced to basic essentials, the X-ray diffraction experiment, Fig. 3.6,
requires an X-ray source, the sample under investigation and a detector to pick
up the diffracted X-rays. Within this broad framework, three variables govern
the different X-ray techniques:

(a) radiation—monochromatic or of variable ;
(b) sample—single crystal, powder or a solid piece:
(c) detector—radiation counter or photographic film.

These are summarized for the most important techniques in Fig. 3.7. With
the exception of the Laue method, which is used almost exclusively by
metallurgists and is not discussed here, monochromatic radiation is nearly
always used.

diffracted
rays
-
incident T
sourcee———— »>m
X=rays~ el

sample

Fig. 3.6 The X-ray diffraction experiment

WAVELENGTH SAMPIE DETECTOR METHOD

Counter Diffractometer
Powder Debye-Scherrer
Film i 2
Guinier (Focusing)
. Rotation

Fixed (Oscillation)

Film Weissenberg

Singl al Precession (Buerger)
ingle crysta

Counter Automatic
Diffractometer

Variable Solid piece Film Laue

Fig. 3.7 The different X-ray diffraction techniques
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¢) The powder method—oprinciples and uses

The principles of the powder method are shown in Fig. 3.8. A monochromatic
beam of X-rays strikes a finely powdered sample that, ideally, has crystals
randomly arranged in every possible orientation. In such a powder sample,
the various lattice planes are also present in every possible orientation. For each
set of planes, therefore, at least some crystals must be oriented at the Bragg
angle, 0, to the incident beam and thus, diffraction occurs for these crystals and
planes. The diffracted beams may be detected either by surrounding the sample
with a strip of photographic film (Debye—Scherrer and Guinier focusing meth-
ods) or by using a movable detector, such as a Geiger counter or scintillation
counter, connected to a chart recorder or computer (diffractometer).

The original powder method, the Debye-Scherrer method, is little used
nowadays, but since it is simple it is instructive to consider its mode of opera-
tion. For any set of lattice planes, the diffracted radiation forms the surface of a
cone, as shown in Fig. 3.9. The only requirement for diffraction is that the
planes be at angle 6 to the incident beam; no restriction is placed on the angular
orientation of the planes about the axis of the incident beam. In a finely

‘ sample

Y

source

(Cu) filter detector
(Ni) (film or movable
Counter )

Fig. 3.8 The powder method

Fig. 3.9 Formation of a cone of diffracted radiation
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Fig. 3.10 Schematic Debye-Scherrer photograph

powdered sample, crystals are present at every possible angular position about
the incident beam and the diffracted beams that result appear to be emitted
from the sample as cones of radiation (each cone is in fact a large number of
closely spaced diffracted beams). If the Bragg angle is 6, then the angle between
diffracted and undiffracted beams is 20 and the angle of the cone is 46. Each set
of planes gives its own cone of radiation. The cones are detected by a thin strip
of film wrapped around the sample, Fig. 3.8; each cone intersects the film as
two short arcs, Fig. 3.10, which are symmetrical about the two holes in the film
(these allow entry and exit of incident and undiffracted beams). In a well-
powdered sample, each arc appears as a continuous line, but in coarser samples
the arcs may be spotty due to the relatively small number of crystals present.

To obtain d-spacings from the Debye-Scherrer film, the separation, .S,
between pairs of corresponding arcs is measured. If the camera (film) radius,
R, is known, then

S 40

SR TE (3.4)

from which 26 and therefore o may be obtained for each pair of arcs. The
disadvantages of this method are that exposure times are long (6 to 24 hours)
and that closely spaced arcs are not well resolved. This is because, although the
incident beam enters the camera through a pinhole slit and collimator tube, the
beam is somewhat divergent and the spread increases in the diffracted beams.
If, in an effort to increase the resolution, a finer collimator is used, the resulting
diffracted beams have much less intensity and longer exposure times are
needed. Apart from considerations of the extra time involved, the amount of
background radiation detected by the film (as fogging) increases with exposure
time and, consequently, weak lines may be lost altogether in the background.

In modern film methods (Guinier Jocusing methods) a convergent, intense
incident beam is used with the result that excellent resolution of lines is
obtained and exposure times are much reduced (10 min to 1 hr). Methods for
obtaining a convergent beam of X-rays are discussed in the next section.

The other modern powder technique is diffractometry, which gives a series of
peaks on a strip of chart paper or on a PC screen. A convergent incident beam
is again used to give fairly good resolution of peaks. Both peak positions and
intensities (peak heights) are readily obtained from the chart to make this a very
useful and rapid method of phase analysis.



138 Crystallography and Diffraction Techniques

The most important use of the powder method is in the qualitative identifica-
tion of crystalline phases or compounds. While most chemical methods of
analysis give information about the elements present in a sample, powder
diffraction is very different and perhaps unique in that it tells which crystalline
compounds or phases are present but gives no direct information about their
chemical constitution.

Each crystalline phase has a characteristic powder pattern which can be used
as a fingerprint for identification purposes. The two variables in a powder
pattern are peak position, i.e. d-spacing, which can be measured very accurately
if necessary, and intensity, which can be measured either qualitatively or
quantitatively. It is rare but not unknown that two materials have identical
powder patterns. More often, two materials have one or two lines with com-
mon d-spacings, but on comparing the whole patterns, which may contain
between ~ 5 and > 100 observed lines, the two are found to be quite different.
The normal practice in using powder patterns for identification purposes is to
pay most attention to the d-spacings but, at the same time, check that the
intensities are roughly correct.

For the identification of unknown crystalline materials, an invaluable refer-
ence source is the Powder Diffraction File (International Centre for Diffraction
Data, USA), previously known as the ASTM or JCPDS file, which contains the
powder patterns of about 35,000 materials; new entries are added at the current
rate of ~ 2,000 p.a. In the search indices, materials are classified either accord-
ing to their most intense peaks or according to the first eight lines in the powder
pattern in order of decreasing d-spacing. Identification of an unknown is
usually possible within 30 min of obtaining its measured powder pattern.
Problems arise if the material is not included in the file (obviously!) or if the
material is not pure but contains lines from more than one phase.

f) Powder diffractometers

The powder diffractometer has a proportional, scintillation or Geiger counter
which scans a range of 20 values at constant angular velocity (it is common
practice to refer to the angle 26 between diffracted and undiffracted beams, Fig.
3.9, rather than to the Bragg angle, #). Usually, the range 10 to 80° 26 is
sufficient to cover the most useful part of the powder pattern. A typical
diffractometer trace is shown in Fig. 3.11(a) for SiO,. The scale is linear in 26
and d-spacings of the peaks may be calculated from Bragg’s law or obtained
from standard tables of d versus 26. The scanning speed of the counter is
usually 2° 26 min~! and, therefore, about 30 min are needed to obtain a
trace. Intensities are taken as either peak heights or for accurate work peak
areas; the most intense peak is given an intensity of 100 and the rest are scaled
accordingly. For accurate d-spacings, an internal standard (a pure material,
such as KCI, whose d-spacings are known accurately) is mixed in with the
sample. A correction factor, which may vary with 26, is obtained from the
discrepancy between observed and true d-spacings of the standard and is then
applied to the pattern that is being measured.
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Fig. 3.11 X-ray powder diffraction pattern of (a) cristobalite and (b) glassy
Si0;, CuK o radiation

Samples for diffractometry take various forms: they include thin layers of
fine powder sprinkled onto a glass slide smeared with vaseline and thin flakes
pressed onto a glass slide. The objective is always to obtain a sample which
contains a random arrangement of crystal orientations. If the crystal arrange-
ment is not random, then preferred orientation exists and can introduce errors,
sometimes very large, into the measured intensities. Preferred orientation is a
serious problem for materials that crystallize in a characteristic, very non-
spherical shape, e.g. clay minerals which usually occur as thin plates or some
cubic materials which crystallize as cubes and, on crushing, break up into
smaller cubes. In a powder aggregate of such materials, the crystals tend to
sit on their faces, resulting in a non-random average orientation.

g) Focusing of X-rays: theorem of a circle

A big disadvantage of Debye-Scherrer cameras is that incident and diffracted
beams are, inevitably, divergent and of low intensity. In diffractometers and
modern focusing cameras, a convergent X-ray beam is used; this gives a dra-
matic improvement in resolution and, because much more intense beams may
be used, exposure times are greatly reduced. It is not possible to focus or
converge X-rays using the X-ray equivalent of an optical lens; instead, use is
made of certain geometric properties of the circle in order to obtain a con-
vergent X-ray beam. These properties are illustrated in Fig. 3.12(a). The arc XY
forms part of a circle and all angles subtended on the circumference of this
circle by the arc XY are equal, i.e. XCY = XC'Y = XC”Y = a. Suppose that X
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Fig. 3.12  (a) Theorem of a circle used to focus X-rays. (b) Arrangement of sample,
source and detector on the circumference of a circle

s a source of X-rays and XC, XC' represent the extremities of a divergent X-ray
beam emitted from X. If the beam is diffracted by a sample which covers the arc
between C and C’ such that the diffracting planes are tangential to the circle, then
he diffracted beam, represented by CY and C'Y, will focus to a point at Y. The
orinciple of the focusing method is therefore to arrange that the source of X-rays,
he sample and the detector all lie on the circumference of an appropriate circle.

1) Crystal monochromators

Fhe same focusing principle is used in the construction of diffractometers and
ocusing cameras, although several different arrangements are found in commer-
ial instruments. An additional feature is often the inclusion of a crystal mono-
“hromator which serves two functions: to give highly monochromatic radiation
ind to produce an intense, convergent X-ray beam. There are several sources of
background scattering in diffraction experiments, one of which is radiation of
vavelength different from that of the K« radiation. K« radiation may be separ-
ited from the rest by the use of filters or, better, by a crystal monochromator.

A crystal monochromator consists of a large single crystal of, for example,
Juartz, oriented such that one set of planes which diffracts strongly (1011 for
Juartz) is at the Bragg angle to the incident beam. This Bragg angle is calcu-
ated for Ak, and so only the K« rays are diffracted, giving monochromatic
adiation. If a flat crystal monochromator were used, much of the Ka; radia-
ion would be lost since the X-ray beam emitted from a source is naturally
livergent; only a small amount of the Ko component would therefore be at the
orrect Bragg angle to the monochromator. To improve the efficiency, the
rystal monochromator is bent, in which case a divergent X-ray beam may be
ised which is diffracted by the crystal monochromator to give a beam that is
ntense, monochromatic and convergent.
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i) Guinier focusing cameras

The arrangement of a focusing or Guinier camera which uses a crystal mono-
chromator M and also makes use of the theorem of the circle described above is
shown in Fig. 3.13(a). A convergent beam of monochromatic radiation passes
through the sample at X. Radiation that is not diffracted comes to a focus at A,
where a beam stop is placed in front of the film to prevent its blackening.
Various beams diffracted by the sample focus at B, C, etc. We know from the
theorem of the circle that A, B, C and X must lie on the circumference of a
circle. The film is placed in a cassette which is in the form of a short cylinder
and lies on the circle ABC. The scale of the film is linear in 2. A schematic film
is as shown in Fig. 3.13(b) except that instead of peaks of different height, lines
of different intensity or different degrees of blackness are seen. Film dimensions
are ~ 1 x 15 cm which makes them very convenient to handle. The line at 0°26
or oo d-spacing corresponds to the undiffracted beam at A in (a). This

C
B
A S
\&
N
X
M
(a)
>
=
]
z
W
L1 I II
) —=— d-spacing (A)
00

Bragg angle 8 (or 20 ) —
(b)

Fig. 3.13 (a) Crystal monochromator M, source S and sample X, in a focusing camera.
(b) Schematic Guinier X-ray powder diffraction pattern
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is the reference position on the film. The mark is made by removing the beam
stop for a fraction of a second while the X-rays are switched on. If required, a
scale may be printed onto the film and the positions of the lines, relative to A,
may be measured with a travelling microscope or, better, by microdensito-
metry; 26 values and d-spacings may then be computed or obtained from tables.

The Guinier method is capable of giving accurate d-spacings with results
comparable to those obtained by diffractometry. Intensities are either est-
imated visually or measured using microdensitometry. Sample sizes are small,
<1 mg, and exposure times vary between 5 min and 1 hr, depending on factors
such as the crystallinity of the sample and the presence or absence of heavy
elements which absorb X-rays.

i) A powder pattern of a crystalline phase is its ‘fingerprint’

There are two main factors which determine powder patterns: (a) the size and
shape of the unit cell and (b) the atomic number and position of the atoms in
the cell. Thus, two materials may have the same crystal structure but almost
certainly will have distinct powder patterns. For example, KF, KCl and KI all
have the rock salt structure and should show the same set of lines in their
powder patterns, but, as can be seen from Table 3.3, both the positions and
intensities of the lines are different in each. The positions or d-spacings vary
because the unit cells are of different size and, therefore, the « parameter in the
d-spacing formula varies. Intensities differ because different anions with differ-
ent atomic numbers and therefore different scattering powers are present in the
three materials, even though the atomic coordinates are the same for each (i.e.
cations at corner and face centre positions, etc.). KCI is a rather extreme
example because the intensities of 111 and 311 reflections are too small to
measure, but it serves to illustrate the importance of scattering power of the
atoms present. Intensities are discussed in more detail in the next section.

A powder pattern has two characteristic features, therefore: the d-spacings of
the lines and their intensity. Of the two, the d-spacing is more useful and
capable of precise measurement. The d-spacings should be reproducible from
sample to sample unless impurities are present to form a solid solution. Inten-
sities are more difficult to measure quantitatively and often vary from sample

Table 3.3  X-ray powder diffraction patterns for potassium halides

KF,a=5347 A KCl, a = 6.2931 A KI, a = 7.0655 A

(hkl) d(A) I d(A) I d(A) I

111 3.087 29 - 4.08 42
200 2.671 100 3.146 100 3.53 100
220 1.890 63 2.224 59 2.498 70
311 1.612 10 == = 2.131 29
222 1.542 17 1.816 23 2.039 27
400 1.337 8 1.573 8 1.767 15
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to sample especially if preferred orientation is present. Thus, the differences in
tabulated intensities for, say, the (220) reflection of the three materials in Table
3.3 are probably not absolute, quantitatively.

The likelihood of two materials having the small cell parameters and
d-spacings decreases considerably with decreasing crystal symmetry. Thus,
cubic materials have only one variable, @, and there is a fair chance of finding
two materials with the same a value. On the other hand, triclinic powder
patterns have six variables, a, b, ¢, o, 3 and +, and so accidental coincidences
are far less likely. Problems of identification, if they occur, are most likely to be
experienced with high symmetry, especially cubic, materials or in cases where
similar-sized ions may replace each other in a particular structure.

k) Intensities

Intensities of X-ray reflections are important for two main reasons. First,
quantitative measurements of intensity are necessary in order to solve crystal
structures. Second, qualitative or semi-quantitative intensity data are needed in
using the powder fingerprint method to characterize materials and especially in
using the Powder Diffraction File to identify unknowns. Although this book is
not concerned with the methods of structure determination, it is important that
the factors which control the intensity of X-ray reflections be understood. The
topic falls into two parts: the intensity scattered by individual atoms and the
resultant intensity scattered from the large number of atoms in a crystal.

i) Scattering of X-rays by an atom: atomic scattering factors

Atoms diffract or scatter X-rays because an incident X-ray beam, which can be
described as an electromagnetic wave with an oscillating electric field, sets each
electron of an atom into vibration. A vibrating charge such as an electron emits
radiation which is in phase or coherent with the incident X-ray beam. The
electrons therefore act as secondary point sources of X-rays. Coherent scatter-
ing may be likened to an elastic collision between the wave and the electron: the
wave is deflected by the electron without loss of energy and, therefore, without
change of wavelength. The intensity of the radiation scattered coherently by
‘point source’ electrons is given by the Thomson equation:

L m%(l + cos?26) (3.5)

where 7, is the scattered intensity at any point, P, and 26 is the angle between
the directions of the incident beam and the diffracted beam that passes through
P. From this equation, the scattered beams are most intense when parallel or
antiparallel to the incident beam and are weakest when at 90° to the incident
beam. The Thomson equation is also known as the polarization factor and is
one of the standard angular correction factors that must be applied when
processing intensity data for use in structure determination.
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At this point, it is worth mentioning that X-rays can interact with electrons in
a different way to give Compton scattering. Compton scattering is rather like an
inelastic collision in that the X-rays lose some of their energy on impact and so
the scattered X-rays are of longer wavelength than the incident X-rays. They
are also no longer in phase with the incident X-rays; nor are they in phase with
each other. Compton scattering is caused by interaction between X-rays and
more loosely held valence electrons; it is an important effect with the lighter
elements and can have a particularly deleterious effect on the powder patterns
of organic materials such as polymers. A close similarity exists between Comp-
ton scattering and the generation of white radiation in an X-ray tube; both are
examples of incoherent scattering that are sources of background radiation in
X-ray diffraction experiments.

The X-rays scattered by an atom are the resultant of the waves scattered by
each electron in the atom. Electrons may be regarded as particles that momen-
tarily occupy different positions in an atom and interference occurs between
their scattered waves. For scattering in the direction of the incident beam, Fig.
3.14(a), beams 1’ and 2, all electrons scatter in phase irrespective of their
position. The scattered intensity is, then, the sum of the individual intensities.
The scattering factor, or form factor, f, of an atom is proportional to its atomic
number, Z, or, more strictly, to the number of electrons possessed by that atom.

For scattering at some angle 26 to the direction of the incident beam, a phase
difference, corresponding to the distance XY, exists between beams 1” and 2”.
This phase difference is usually rather less than one wavelength (i.e. XY <
1.5418 A for Cu Ka X-rays) because distances between electrons within an
atom are short. As a result, only partial destructive interference occurs between
1” and 2". The net effect of interference between the beams scattered by all the
electrons in the atom is to cause a gradual decrease in scattered intensity with
increasing angle, 26. For example, the scattering power of Cu is proportional to
29 (i.e. Z) at 26 = 0°, to 14 at 90° and to 11.5 at 120°. It should also be apparent
that for a given angle, 26, the net intensity decreases with decreasing X-ray
wavelength because the phase difference XY gives a greater degree of cancella-
tion for smaller A. The form factors of atoms are given in International Tables
Sfor X-ray Crystallography, Vol. 3 (1952). They are tabulated against (sin 6/1) to
include the effect of both angle and X-ray wavelength; examples are shown in
Fig. 3.14(b).

Two consequences of the dependence of form factors on sin /4 and atomic
number are as follows. First, powder patterns at high angles (above ~ 60 to 70°
20) are usually weak. Second, in X-ray crystal structure determination it is
difficult to locate light atoms because their diffracted radiation is so weak. Thus
H cannot usually be located unless all the other elements present are also extre-
mely light. Atoms that have as many electrons as oxygen can usually be located
easily unless a very heavy atom such as uranium is present. Structures that are
particularly difficult to solve are those in which a considerable number or all of
the atoms have similar atomic number, e.g. large organic molecules with C, N
and O. In such cases, a common ploy is to make a derivative of the compound
of interest which contains a heavy metal atom. The heavy atoms are detected
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Fig. 3.14 (a) Scattering of X-rays by electrons in an atom. (b) Form factors of Ca?t
and F~

readily because they determine the phase of diffracted beams, and this helps
towards placing the remaining atoms. Because of their similar atomic numbers,
Al and Si are difficult to distinguish, which may cause problems in determina-
tions of aluminosilicate structures. One advantage of using neutrons instead of
(or as well as) X-rays for crystallographic work is that the neutron form factors
are not a simple function of atomic number. Light atoms, e.g. especially H and
Li, are often strong neutron scatterers.
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ii) Scattering of X-rays by a crystal—systematic absences

Earlier, we treated diffraction in terms of Bragg’s law, with crystals divided up
into sets of lattice planes, defined with reference to the shape and dimensions of
the unit cell. Each set of planes, has a characteristic d-spacing and the Bragg
angle can be evaluated for a given wavelength. The number of possible sets of
planes is limited since, using equation (1.1) for orthogonal crystals, i.e. with
a=03=~=90° h, k and / must be integers. It is possible to calculate all
possible d-spacing values from equation (1.1) or the appropriate equations for
other unit cell shapes, although the calculation is usually terminated when
either a minimum d-spacing or maximum set of indices is reached. This has
been done for a hypothetical orthorhombic crystal, with all possible A, k, /
combinations of 0 and 1, in Table 3.4. Obviously, the list could be extended for
higher indices.

In principle, each set of lattice planes can give rise to a diffracted beam. In
practice, the intensity of the beams diffracted by certain sets of lattice planes
may be zero. These are known as systematic absences. Systematic absences arise
if the lattice type is non-primitive (I, F, etc.) or if elements of space symmetry
(screw axes, glide planes) are present.

As an example of absences due to lattice type, consider a-Fe, Fig. 3.15(a),
which is bcc. Reflection from the (100) planes has zero intensity and is system-
atically absent. This is because, at the Bragg angle for these planes, the body
centre atoms which lie midway between adjacent (100) planes diffract X-rays
exactly 180° out of phase relative to the corner atoms which lie on the (100)
planes. Averaged over the whole crystal, there are equal numbers of corner and
body centre atoms and the beams diffracted by each cancel completely. In

Table 3.4  Calculated d-spacings for an orthorhombic
cell, fora=3.0,b=40,c=50A

hkl d(A) hkl d (A)
001 5.00 101 2.57
010 4.00 110 2.40
011 3.12 111 2.16
100 3.00

(a) (b) (c)

O

e}

T
|
=)
o
—

(200) ~?\__

(100)
(200)
(200)

Fig. 3.15 (a) bee o-Fe, (b) (100) planes, (¢) (200) planes
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Table 3.5 Systematic absences due to lattice type

Lattice type Rule for reflection to be observed*
Primitive, P None

Body centred, I hkl; h+k+1=2n

Face centred, F hkl; h, k, [ either all odd or all even
Side centred, e.g. C hkl, h+k = 2n

Rhombohedral, R hkl; —h+k+1=3nor (h—k+1=3n)

* If space symmetry elements are present, additional rules may apply. These ‘\
are not dealt with here. w

contrast, a strong 200 reflection is observed because all the atoms lie on (200)
planes (c) and there are no atoms lying between (200) planes to cause destruc-
tive interference. It is easy to show, by similar arguments, that the 110 reflection
is observed whereas 111 is systematically absent in a-Fe. For each non-primi- .
tive lattice type there is a simple characteristic formula for systematic absences,
Table 3.5. For a body centred cell, reflections, for which (h +k + 1) is odd, are
absent, e.g. reflections such as 100, 111, 320, etc., are systematically absent.

Systematic absences are an extreme case of destructive interference between
X-ray beams diffracted by individual atoms. They arise when one set of atoms
diffracts X-rays that are exactly out of phase with those diffracted by a second
set of atoms of the same type. Two conditions must be met for systematic
absences: the diffracted beams must be out of phase (by 4/2 or 7) and of the
same amplitude (determined by scattering powers, /). In cases where destruc-
tive interference is not complete and intensities are actually observed, then one
or both of these conditions is not met.

Let us consider now the rock salt structure. It is fcc and therefore, only those
reflections for which A, k, [ are either all odd or all even may be observed (Table
3.5). From this rule, for instance, (110) is systematically absent. In Fig. 3.16(a),
(110) planes have Na* and ClI~ ions on the planes but equal numbers of the
same ions are midway between the planes. Both conditions specified above are
met and complete cancellation occurs. For the (111) planes, however, Na' ions
lie on the planes and C1~ ions lie exactly midway between them. Hence, the Na*t
and Cl~ ions scatter exactly 180° out of phase with each other for these planes,
but since they have different scattering powers the destructive interference that
occurs is only partial. The intensity of the (111) reflection in materials that have
the rock salt structure is, therefore, related to the difference in atomic number
of anion and cation. For the potassium halides, the (111) intensity is zero for
KCl, since Kt and CI~ are isoelectronic, and its intensity should increase in the
order:

KCl < KF < KBr < KI

Some data which confirm this are given in Table 3.3.
Similar effects occur in other simple structures. In primitive cubic CsCl, if the
difference between caesium and chlorine is ignored the atomic positions are the
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Fig. 3.16 (a) (110) and (b) (111) planes in NaCl

same as in body centred a-Fe, Fig. 3.15. The (100) reflection is systematically
absent in a-Fe but is observed with CsCl because the scattering powers of Cs*
and CI™ are different, i.e. foo+ # for .

iii)  General formula for phase difference, §

Each atom in a crystal scatters X-rays by an amount related to the scattering
power, f, of that atom. In summing the individual waves to give the resultant
diffracted beam, both the amplitude and phase of each wave are important. If
we know the atomic positions in the structure, the amplitude and phase
appropriate to each atom in the unit cell may be calculated and the summation
carried out by various mathematical methods, therefore simulating what
happens during diffraction. Let us consider first the relative phases of different
atoms in the unit cell. In Fig. 3.17(a) are drawn two (100) planes of a crystal
that has an orthogonal unit cell. Atoms A, B, C. A’ lie on the a axis (per-
pendicular to (100) planes) with A and A’ at the origin of adjacent unit cells.
For the 100 reflection, A and A’ scatter in phase because their phase difference is
exactly one wavelength, 27 radians (Bragg’s law). Atom B, situated halfway
between adjacent (100) planes, has fractional x coordinate (relative to A) of %
The phase difference between (waves diffracted from) A and B is % 2r =, i.e.
atoms A and B are exactly out of phase. Atom C has a general fractional
coordinate x (at distance xa from A) and, therefore, a phase relative to A of
27x (b).

Consider, now, the (200) reflection for the same unit cell (c). Since
droy = %dmo, then from Bragg’s Law, sinfy = 2sinfg9 and therefore
0200 > 0100. Atoms A and B have a phase difference of 27 for the (200)
reflection and scatter in phase, whereas their phase difference is 7 for the
(100) reflection. Thus, the effect of halving d is to double the relative phase
difference between pairs of atoms such as A and B: therefore, A and C have a
phase difference of (2x - 27) for the (200) reflection.
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Fig.3.17 (a, b) (100) planes for an orthogonal unit cell (o« = 3 = 3= 90"’)._ Atoms A, B,
C, A’ lie on the a cell edge. (c) (200) planes for the same unit cell as in (a, b)

For the general case of an /00 reflection, the d-spacing betweep
adjacent (400) planes is (1/h)a and the phase difference, 6, between A and C is
given by

6 =2mhx (3.6)

The phase difference between atoms depends, therefore, on two factors: the
indices of the reflection that is being considered and the fractional coordinates
of the atoms in the unit cell. This reasoning may be extended readily to
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diffraction in 3D. For reflection from the set of planes with indices (/kl), the
phase difference, &, between atoms at the origin and a position with fractional
coordinates x, y, z is given by

6 =2m(hx+ky+Iz) (3.7)

This important formula is applicable to all unit cell shapes. Let us use it on a
simple structure, v-Fe, which is fcc with atoms at the corner and face centre
positions, i.e. with fractional coordinates:

0,0,0; 1,3,0; 1,04; 0,4,
These coordinates may be substituted into the formula for § to give four phases:
0, m(h + k), m(h+1), n(k +1)

How do these vary? If , k and / are either all even or all odd, the phases are
in multiples of 27 and, therefore, are in phase with each other. If, however,
one, say h, is odd and the other two, k and /, are even, the four phases
reduce to

0,2n+ 1)m, 2n+ )m, 2nm

The first and last are 7 out of phase with the middle two and complete
cancellation occurs. The +-Fe structure is a simple example of an fec lattice in
which the Fe atoms correspond to lattice points; we have in fact just proved the
condition for systematic absences due to face centring! (Table 3.5). The reader
may like to prove the condition for systematic absences in a bee structure by
working out the phases of the atoms for the structure of a-Fe.

iv)  Intensities and structure factors

Let us now generalize the treatment to consider any atom, j in the unit cell. The
diffracted wave of amplitude J; and phase §; is a sine wave of the form

Fy = f; sin(wt — &) (3.8)

The waves diffracted from each atom in the cell have the same angular fre-
quency, w, but may differ in fand é. The resultant intensity is obtained from the
summation of the individual sine waves. Mathematically, addition of waves
may be carried out by various methods, including vector addition and the use
of complex numbers. In complex notation, wave J may be written as

Fj = fi(cosé; + i sind;) (3.9)
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or as

Fy = f exp(is)) (3.10)

where i = vV —1

The intensity of a wave is proportional to the square of its amplitude; i.e.
I f’? (3.11)

and is obtained by multiplying the equation for the wave by its complex
conjugate; i.e.

I o f; exp(ié;) - f;exp(—id;)
and therefore
I x jj-z
Alternatively,
[ fi(cosé; + i sin;)][ f;(cosé; — i siné))] = f(cos’s; + sin’6;) = f?
Substituting the expression for &, the equation of a diffracted wave becomes

F; = f; exp2mi(hx; + ky; + Iz;)

. (3.12)
= filcos2m(hx; + ky; + Iz;) + i sin2w(hx; + ky; + Iz;)]

When written in this form, the summation over the j atoms in the unit cell may
be carried out readily, to give the structure factor or structure amplitude, Fyy,
for the Akl reflection; i.e.

Fia =) [f; exp(it))

Jj=l—n
or

Fiy = fj(cosd; + i sind)) (3.13)
J

. . . a .
The intensity of the diffracted beam 7, is proportional to |Fues|” and is
obtained from

Ly o< ]F/,k/|2 = Z f}(COS(Sj +-i Sinéj):l lz fj(cos&j = sin@-)]
) 7
= Z(f_,- cosd;)” + Z(f_,- sin6j)2 (3.14)
J J
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This latter is a very important formula in crystallography because, using it, the
intensity of any hkl reflection may be calculated from a knowledge of the
atomic coordinates in the unit cell. Let us see one example of its use. Calcium
fluoride, CaF,, has the fluorite structure with atomic coordinates in the fcc
unit cell:

Ca 0,0,0
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=
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Substitution of these coordinates into (3.13), yields

Fint =fcalcos2m(0) + cosm(h + k) + cosm(h + 1) + cosm(k + /)]
+ ifca[sin2m(0) + sinw(h + k) + sinw(h + /)
+ sinm(k + )] + fr[cosm/2(h + k + 1)
+ cosw/2(h + k + 3/) + cosmw/2(h + 3k + 1)
+ cosm/2(3h + k + 1) + cosm/2(3h + 3k + 1)
+ cosm/2(3h + k + 31) + cosmw/2(h + 3k + 31)
+ cosm/2(3h + 3k + 31)] + ifg[sinm/2(h + k + 1)
+ sinm/2(h + k + 31) + sinw/2(h + 3k + 1) + sinm/2(3h + k + 1)
+ sinm/2(3h + 3k + 1) + sinm/2(3h + k + 31)
+ sinm/2(h + 3k + 31) + sinm/2(3h + 3k + 31)]

Since the fluorite structure is fec, b,k and / must be all odd or all even for an
observed reflection; for any other combination, F = 0 (try it!). Consider the
reflection 202:

F02 =fca(cos0 + cos2m + cosdm + cos2)
+ ifca(sin0 + sin27 + sindr + sin2)
+ fr(cos2m + cosdm + cos2m + cosdm + cosdm + cosbm
+ cosdm + cos6m) + ifg(sin27 + sindm 4 sin27 + sindw + sindw
+ sin6m + sindm + sin6m)

That is,

P2 =fca(l+14+141) +ifca(0+0+0+0)
+fF(I+1+14+14+1+14+141)
+iff(0+0+0+0+0+0+0+0)

ie.

Frpo = 4f(.| el 8/]
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The 202 reflection in CaF, has a d-spacing of 1.929 A (a = 5.464 A).
Therefore

0202 = 23.6° and sinf/A = 0.259 for A = 1.5418 A (Cu K«)

Form factors for Ca and F are given in Fig. 3.14(b); for sinf/1 = 0.259, by
interpolation,

fea=12.65 and fr=15.8

Therefore,

Fyp =97

This calculation may be made for a series of 4k/ reflections and the results, after
scaling, compared with the observed values, Table 3.6. In solving unknown
structures, the objective is always to obtain a model structure for which the
calculated structure factors, F,‘f,?}c, are in good agreement with experimental
values i.e. FOS5.

An important feature which simplifies the above calculations is that all the
sine terms are zero. This is because the origin of the unit cell is also a centre of
symmetry. For each atom at position x,y,z there is a centrosymmetrically
related atom at —x,—y,—z (eg. F at 1,11 and —j-i-4 ie
1-1,1-31-}or3 3 ) and since sin(—6) = —siné, the summation of the
sine terms over the unit cell contents is zero. If, on the other hand, one of the F
atoms was taken as the origin of the cell, the sine terms would be non-zero
because, F, with its immediate coordination environment of 4Ca arranged
tetrahedrally, does not lie on a centre of symmetry. Many structures, of course,
belong to non-centric space groups, in which case the complete calculation of F
using both cosine and sine terms cannot be avoided.

v) R-factors and structure determination

It was shown above how the structure factor, F,f,f}c may be calculated for any

hkl reflection from a knowledge of the coordinates of the atoms in the unit cell.
The values of F{¢ for the first five lines in the powder pattern of CaF; are
given in Table 3.6. The experimental intensities, the intensities after correction
for the L, factor and multiplicities and the observed structure factor, F,‘,’,f’,s, given
by: F = /Tcorr, are also listed. In order to compare the values of Fg and
Feile "they are scaled such that 3 Fg2¥ = 3" Fgi°. Multiplication of each Fj
value by 141 gives the scaled values listed. The measure of agreement between
the individual, scaled F3% and Ffii° values is given by the residual factor or R-

factor, defined by:

_ X [l P
- Z |Fobsl

An R-factor of 0.15 (or 15 per cent after multiplying by 100) is obtained.

R (3.15)
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Table 3.6 Structure factor calculations for Ca
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Fobs scaled

Fobs Fcalc

I/(multiplicity xLy)

Multiplicity*

hkl

67

0.640
0.690

0.409

111 100 8
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202

3.143

97

0.476

57

1.929

1.647

1.366
1.254
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75
39

0.313
0.439
0.217

0.098
0.193
0.047
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6
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5
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400
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324 —
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used in defining it.

e number of equivalent sets of planes that diffract at the same Bragg ang

* The multiplicity of an X-ray powder line is th

3.5) and certain instrumental factors. Available from

dex indicates that a negative crystallographic direction was

* The Lorentz polarization factor, Ly, is an angular correction factor that includes the effect of equation (

111. 111, 111, 111 and 111, where a negative in
standard tables.
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In solving unknown structures, one is guided, among other things, by the
value of R: the lower it is, the more likely is the structure to be correct. The
calculation given for CaF; is rather artificial since only five reflections were
used (normally, hundreds or thousands are used), but it serves as an illustra-
tion. It is not possible to give hard and fast rules linking the magnitude of R and
the likely correctness of a structure, but, usually, when R is less than 0.1 to 0.2,
the proposed structure is essentially correct. A structure which has been solved
fully using good quality intensity data has R typically in the range 0.02 to 0.06.

1) Electron density maps

An electron density map shows the variation of electron density throughout the
unit cell. When solving an unknown structure it is often useful to construct
electron density maps (Fourier maps) in order to try and locate atoms. As the
structure refinement proceeds, the quality of the electron density map usually
improves: the background electron density decreases and more peaks due to
individual atoms become resolved. We are concerned here, not with the meth-
ods of structure refinement but only with the results, and the electron density
map obtained at the end of a structure determination is an important piece of
information. Electron density maps take the form of sections through the
structure at regular intervals; by superposing these, a 3D picture of the electron
density distribution may be obtained. In Fig. 3.18 is shown the electron

Fig. 3.18 Electron density map for NaCl
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density distribution for a section through a very simple structure, NaCl. The
section is parallel to one unit cell face and passes through the centres of the
Nat, CI™ ions. It has the following features.

An electron density map resembles a geographical contour map. The con-
tours are lines of constant electron density throughout the structure. Electron
density maxima correspond to atoms; the coordinates of the atoms in the unit
cell are given by the coordinates of the peak maxima. The peak height is
proportional to the number of electrons possessed by that atom, which apart
from very light atoms equals the atomic number of that atom. In Fig. 3.18,
peaks of relative height 100 and 50 are seen and are assigned to Cl and Na,
respectively. (The atomic numbers of Cl and Na are 17 and 11; for ions, the
number of electrons are 18 and 10. The experimental maxima are therefore in
fair agreement with the expected values.)

Electron density maps also show that our mental picture of atoms as spheres
is essentially correct, at least on a time average. The electron density drops to
almost zero at some point along the line connecting pairs of adjacent atoms in
Fig. 3.18 and this supports the model of ionic bonding in NaCl. In structures
which have covalent bonding, there is residual electron density between atoms
on the electron density map. However, in other than very simple structures,
such as the alkali halides, it is difficult to use electron density maps to determine
quantitatively the distribution of valence electrons. In most structure refine-
ments, both the position and thermal vibration factors of atoms are varied in
order to achieve the best agreement between measured and calculated structure
factors. The final parameters may represent a compromise, therefore, and
the electron density map, which is greatly influenced by the thermal vibration
factors, is not necessarily an absolute representation of the distribution
of valence electrons. In refining simple structures, the atomic coordinates
are usually known accurately. This then gives more accuracy to the thermal
vibration factors (or temperature factors) and hence to the electron density
map.

m) X-ray crystallography and structure determination—what’s involved?

For determining the structures of crystalline materials, X-ray crystallography
reigns supreme. For molecular materials, it complements the use of spectro-
scopic techniques—NMR, mass spectroscopy, etc.—and often, one may use
either crystallography or spectroscopy to determine molecular structures. For
non-molecular materials, or for molecular materials whose arrangement in the
crystalline state is important, or whose bond lengths and angles must be
determined, then X-ray crystallography is by far the most important technique
for structure determination.

Nowadays, solving structures is mathematically complex but usually
highly automated with computer-controlled collection and processing of
diffraction data. It requires large, expensive instruments to do the diffraction
experiments and is time-consuming: given a reasonable-sized single crystal,
several days are often required to collect the data and at least a few hours
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of computation to solve the structure. It is not yet the kind of experiment that
is carried out in an afternoon in a laboratory, but nevertheless, it is important
to have at least a passing familiarity with the processes and problems involved.
In fact, we have already covered much of the groundwork earlier in this
chapter.

Solving an unknown structure is a bit like solving a set of simultaneous
equations. The unknowns are the atomic coordinates and the equations are
the experimental intensity data. Obviously, we must have at least as many
equations (i.e. intensities) as variables but in practice, we need many more
intensities than variables to obtain good quality structure determinations.
This is partly because the intensity data may have errors, partly because the
computational methods involve statistical analyses of data which function
properly only with large data sets, and partly because the Fourier methods
used in structure determination are effective only with a large number of
coefficients (intensities). Let us see some examples with structures of varying
complexity, because the number of variables to be determined dictates the type
of diffraction experiment that is required.

First, suppose that we have material, MX», suspected to have the rutile
structure: how many variables must be determined in order to confirm the
structure? From the rutile structure, Fig. 1.32, atoms M are in fixed positions,
at the corner and body centre and hence have no positional variables. The
atoms, X, have a single positional variable, x, since the coordinates of the four
atoms in the unit cell are given by:

xx0 1-x,1—x0; %—x,%+.\',%; l+xi-x3

Hence, once x has been determined, all four atoms have been located. (Note,
for TiO,, Fig. 1.32, x = 0.3.)

In addition to the positional variables, atoms vibrate, either isotropically or
anisotropically and the temperature factors are additional variables which must
be determined in any good quality structure refinement. The first stage is to
determine isotropic temperature factors, Biso, which assumes that the atoms are
vibrating isotropically; there are two of these for rutile, one for M and one for
X. In many cases, determination of positional coordinates and Biso values is
sufficient. In order to determine these accurately, intensities of at least 10-20
reflections would normally be required; since the powder X-ray pattern may
contain at least this number of lines, the structure could be determined satis-
factorily from powder data.

Second, a moderately complex structure is that of YBa;Cu3O,, the so-called
YBCO or Y123 ceramic superconductor. It is orthorhombic with a structure
related to but rather more complex than that of perovskite. The unit cell
contains one formula unit with x = 7.0. There are 5 positional variables to be
determined to locate all the atoms and 8 Bis, values (4 for oxygen, since there are
four crystallographically distinct oxygens in the structure, 2 for Cu and 1 each
for Ba, Y). One of the oxygens is present in variable amounts (x is variable in



158 Crystallography and Diffraction Techniques

the formula) and the fractional occupancy of its site is a variable. This gives a
total of 14 variables and for a good structure determination, 200-300 intensities
would be required. Routine powder methods do not give this number of well-
resolved reflections; either special powder techniques, such as high-resolution
neutron or X-ray diffraction, or single crystal methods must be used. In these,
the data set is increased both by collecting data to lower d-spacings using
shorter-wavelength radiation and, with single crystals, by recording data that
are too weak to appear in powder patterns.

Third, for yet more complex structures, such as many silicates and complex
organic molecules, especially if they are of low symmetry, the number of
variables may be 50-100 and single crystal data, giving perhaps 2,000 to
3,000 intensities, are usually essential.

Once the intensity data have been collected, corrected for factors such as
Lorentz polarization and converted to observed structure factors, the process
of solving the structure can begin. The problem is essentially to determine the
values of the atomic coordinates x, y, z that, when substituted into equation
(3.12), yield calculated F values that match the observed ones.

In cases where both the signs (+or—) and magnitudes of the F obs yvalues are
known, there are standard mathematical procedures, based on Fourier series,
for attacking this problem. This is because the observed diffracted X-ray beams
may be combined mathematically, as a Fourier transform, to give the crystal
structure in the form of an electron density map (as in Fig. 3.18). The relevant
equation is:

plu,v,w) = lVZ Z Z Fy cos 2m(hu + kv + Iw) (3.16)
hok 1

from which, for any point %, v, w in the unit cell, the electron density, p, is
calculated by substituting into the summation all the observed F and A, k, [
values. In order to obtain a good quality map, there must be a large number of
terms in the summation and this is the main reason why the number of intensity
values required for a structure determination is much greater than the number
of variables.

There is a clear analogy between this mathematical addition and the
production of images in optical and electron microscopes. In microscopes, the
diffraction pattern obtained by shining a beam of either light or electrons on
the sample, is combined to give an image using either an optical lens or an
electromagnetic lens. There is, unfortunately, no material that can act as an “X-
ray lens’ and we must resort to mathematical methods to perform this combi-
nation. This brings us to the key problem in crystallography: while the ampli-
tudes of the F°% values are determined directly and unequivocally from the
intensities, their phases are not. Thus, while the 7 values must be positive, the F/
values, given by v/I, may be positive or negative. Many means have been
devised to attack this ‘phase problem’. The most successful ones are
outlined next.
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i) The Patterson method

This method uses a Fourier summation rather similar to equation (3.16) but in
which intensity (or F7,) data form the coefficients, i.e.

1
P(u,v,w) = ?Z Z Z |Fot|*cos 2 (hu + kv + Iw) (3.17)
Rk

The resulting Patterson map looks similar to a Fourier map, but the regions of
high electron density correspond to vectors between pairs of atoms. The peak
heights are proportional to the products of the atomic numbers; hence, vectors
formed from pairs of the heaviest atoms in the unit cell give rise to the largest
peaks. The peak positions give the separation, vectorially, of these two atoms in
the structure. Thus, two atoms at xj, 1,z and xz, y2,z; will give a Patterson
peak, relative to the origin of the Patterson map, at x| — x2,y1 — 2,21 — 22.
This does not give the positions of heavier atoms directly, but it does give
their relative positions in the unit cell and this is often of great assistance in
getting started: thus, if one atom can be located with confidence, then the
Patterson map may suggest the location of others. Once such a start has
been made, other Fourier methods may be used to complete the structure
determination.

ii) Fourier methods

These may be used even though the complete list of £°** values, with their signs,
is not available. Use is made of composite F values, whose magnitudes are
taken from the F°™ listing and whose signs are taken from a partial structure
factor calculation based on the heavy atom positions only. Since the heavy
atoms scatter X-rays most strongly, they are likely to dominate the intensities
and, in particular, control the phases (i.e. whether + or —). Hence, most of the
signs can probably be determined correctly at this stage, especially for the larger
F values. A Fourier map, made from equation (3.16) and these composite F
values, should then reveal considerably more electron density peaks and enable
lighter atoms to be located. This process may be repeated: a more accurate
structure factor calculation is performed using the more extensive list of
atomic coordinates obtained from the Fourier map; consequently, the signs
of more Fvalues are determined correctly and an improved Fourier map can be
calculated.

Once most of the atoms have been located approximately, least squares
refinement procedures may be used to improve the agreement between F gbs
and F and thereby, minimize the R-factor, equation (3.15). In these proced-
ures, atom positions are permitted to vary somewhat, the effect on R is noted
and the optimum positions (for minimum R) are found by trial and error. It is
also useful to construct a difference Fourier map using (F obs _ peale) yvalues as
the coefficients:
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Au, v, w) = lVZ DO (Fb — Fe) cos 2m(hu + kv + Iw) (3.18)
h k !

A difference map may show regions of low, positive electron density associated
with previously undetected light atoms such as H. Or, it may show regions of
negative electron density, indicating that an atom has been wrongly placed at
that position. Or it may be completely featureless, indicating that the structure
refinement is correct and complete.

iii) Direct methods

These are very useful for structure determination and work best when all the
component atoms have similar atomic number, thus complementing the Pat-
terson method which works best when a small number of heavy atoms are
present. Direct methods are used to determine phases. They are based on the
statistical probabilities of phases being either + or —. For example, for cen-
trosymmetric structures, the Sayre probability relationship indicates that for
three reflections 4, k, I, ', k', I' and ", k", I" that are related by /" = h— /I,
k" =k — k' and I = [ — I, then the sign of one phase is likely to be the same as
the product of the signs of the other two. Thus, if 312 and 111 are both—, then
201 is probably +. By choosing three reflections, whose phases are not known,
there are eight possible combinations of + and —. For each combination, the
phases of other reflections may be predicted. A range of methods are available
for predicting phases and optimizing the value of the predictions. The end result
is an E-map, similar to an electron density map and from which atomic posi-
tions may be determined.

3.4 Electron diffraction

Electrons have wave characteristics which allow them to be used for diffraction
experiments. Their wavelength is related to velocity, which is governed by the
voltage through which they are accelerated in an ‘electron gun’ and is usually
about 0.04 A in conventional electron microscopes. The two techniques of
electron diffraction and electron microscopy are closely related. The latter is
used more widely and is discussed in Chapter 4; here we shall see briefly the
general characteristics of electron diffraction and how it compares with X-ray
diffraction.

Electrons interact strongly with matter and intense diffraction patterns are
obtained from very small samples; indeed, for transmission studies, the samples
should not be thicker than about 100 nm (1 nm = 10 A), otherwise the electrons
may not pass through the sample. This contrasts markedly with X-ray diffrac-
tion: the efficiency with which X-rays are diffracted by matter is low and, for
single crystal studies, relatively large crystals, 0.05 mm or greater in dimensions
are required.

One disadvantage of electron diffraction is that secondary diffraction
commonly occurs. Because the scattering efficiency of electrons is high, the
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diffracted beams are strong. Secondary diffraction occurs when these diffracted
beams effectively become the incident beam and are diffracted by another set of
lattice planes. There are two undesirable consequences of secondary diffraction.
First, under certain circumstances, extra reflections may appear in the diffrac-
tion pattern; care is therefore needed in their interpretation. Second, the intens-
ities of diffracted beams are unreliable and cannot be used quantitatively for
structure determination.

In spite of these disadvantages, electron diffraction is very useful and com-
plements the various X-ray techniques. Thus with X-rays, the scattering effi-
ciency is small, secondary diffraction is rarely a problem and intensities are
reliable, but (relatively) large samples are needed. With electrons, the scattering
efficiency is high and intensities are unreliable, but very small samples can be
studied. The technique is very useful for obtaining unit cell and space group
information for crystals smaller than 0.01 to 0.02 mm in diameter; it is, in fact,
the only reliable method for obtaining such information. Other methods such
as graphical or computer-assisted indexing of X-ray powder patterns, give
results that are not always 100 per cent reliable. In spite of its utility, electron
diffraction is underused in solid state chemistry for unit cell and space group
determination.

Electron diffraction is unsuitable as a routine method of phase identification
in relatively large (e.g. 10 mg or more) samples. It is useful, however, (a) when
very small quantities are available, (b) for thin film samples, and (c) for
detecting small amounts of impurity phases. In all these cases, there would be
insufficient material to show up in X-ray diffraction.

3.5 Neutron diffraction

Neutron diffraction is a very expensive technique. In order to get a sufficiently
intense source of neutrons, a nuclear reactor is needed. Few laboratories have
their own neutron facility and, instead, experiments are carried out at central
laboratories which provide a user service (e.g. at the ILL, Grenoble, France or
the Argonne, USA). In spite of its high cost, neutron diffraction is a valuable
technique and can provide information, especially on magnetic materials, that
is not attainable with other techniques. Clearly, it is never used when alternative
techniques, such as X-ray diffraction, can solve a particular problem.

Neutron beams are usually of low intensity and therefore the sample size
required is relatively large, at least | mm?. Since crystals of this size are often
not available, crystallographic studies are usually carried out on polycrystalline
samples. A powder neutron diffraction pattern looks very much like an X-
ray one.

There are several characteristic differences between neutron and X-ray dif-
fraction. First, the neutrons obtained from a nuclear reactor give a continuous
spectrum of radiation, without the intense characteristic peaks that are present
in X-ray spectra (as in Fig. 3.1b). The neutrons that are used for diffraction
have wavelength of the order 0.5 to 3 A. In order to have monochromatic
neutrons for conventional diffraction experiments, it is necessary to select
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a particular wavelength and filter out the remainder using a crystal monochro-
mator. Most of the available neutron energy is wasted, therefore, and the beam
that is used is weak and not particularly monochromatic.

A recent exciting advance uses pulsed neutron sources coupled with time of
flight analysis. The neutrons are obtained using particle accelerators to bom-
bard a heavy metal target with high-energy particles such as protons. The
efficiency of the spallation process, yielding about 30 neutrons per proton,
gives a high neutron flux suitable for diffraction experiments. In the time of
flight method, the entire neutron spectrum (variable wavelength) is used with a
fixed diffraction angle, #. Neutron wavelength depends on velocity, given by the
de Broglie relation, A =h/mv, where m is the mass of the neutron,
1.675 x 1077 kg. Hence, the diffracted radiation arriving at the detector is
separated according to its time of flight and wavelength. The fundamental law
of diffraction is again Bragg’s law, ni = 2dsiné. In the time of flight method, A
and d (the d-spacing) are the variables at fixed 6. This compares with conven-
tional diffraction techniques in which & and 6 are the variables at fixed 4. The
pulsed method gives rapid data collection. It may therefore also be used for
studies of short time phenomena, especially in experiments where samples are
subjected to pulsed magnetic fields.

A second difference between neutron and X-ray diffraction is that the
scattering powers of atoms towards neutrons are quite different from those
towards X-rays. In the latter, scattering power is a simple function of atomic
number and light atoms such as hydrogen diffract X-rays only weakly. With
neutrons, the atomic nuclei, rather than the extranuclear electrons, are respons-
ible for the scattering and in fact, hydrogen is a strong scatterer of neutrons.
There is no simple dependence of neutron scattering power on atomic number
and additionally, some atoms cause a change of phase of 7 (or A/2) in the
diffracted neutron beam.

a) Crystal structure determination

Neutron diffraction may be used for crystallographic work in cases where X-
ray diffraction is inadequate. It has been much used to locate light atoms,
especially hydrogen in hydrides, hydrates and organic structures. Usually, the
main part of the structure is solved by X-ray methods and neutron diffraction is
used to locate the light atoms. Neutron diffraction is also used to distinguish
atoms that have similar X-ray scattering powers, such as Mn, Fe, Co and Ni.
The neutron scattering powers of these atoms are different and, for instance,
superlattice phenomena, associated with Mn/Fe ordering in alloys, are readily
observed by neutron diffraction.

b) Magnetic structure analysis

Magnetic properties depend on the presence of unpaired electrons, especially in
d or f orbitals. Since neutrons possess a magnetic dipole moment, they interact
with unpaired electrons and consequently, are diffracted by both atomic nuclei
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Fig. 3.19 Antiferromagnetic superstructure in MnO, FeO and NiO, showing pseudo-
cubic unit cell for which a (supercell) = 2a (subcell). Oxygen positions are not shown

and unpaired electrons. This forms the basis of a powerful technique for
studying the magnetic structure of materials. A simple example of magnetic
structure and order is shown by NiO. By X-ray diffraction, NiO has the fcc
rock salt structure. When examined by neutron diffraction, however, extra
peaks are observed which indicate the presence of a superstructure. This arises
because the unpaired d electrons (in the ¢, orbitals) are arranged so as to be
antiparallel in alternate layers of nickel atoms, Fig. 3.19. Neutrons detect this
or'dering of spins whereas X-rays do not. The unit cell of ‘antiferromagnetic’
NiO, which is stable below 250°C, has eight times the volume of paramagnetic
NiO, stable above 250°C. The structure also shows a slight rhombohedral
distortion, involving a contraction in the [111] direction perpendicular to the
planes of ordered Ni** ions. This distortion is very small, however, and is
detectgd by the splitting of reflections such as [111] and [111] only in high
.resolutlon neutron powder diffraction patterns. For present purposes, we may
ignore this distortion and treat the structure, geometrically as cubic.

Neutron powder diffraction patterns for MnO (which behaves very similarly
to NiO) below and above the Néel temperature, together with a schematic X-
ray powder pattern at room temperature, are shown in Fig. 3.20. Comparison
of t.he two patterns above Ty (b and c) shows that lines appear in the same
positions but are of very different intensities. In the rock salt structure, the
condition for reflection is that 4, k, / should be either all odd or all even. Hence
the first four lines to be expected in the powder pattern are 111, 200, 220 ami
311. All four lines appear in both patterns but 200 and 220 are weak in the
neutron pattern (b). The small intensity of 200 and 220 in (b) is largely because
the neutron scattering powers of Mn** and O® are opposite in sign although
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Fig. 3.20 Schematic neutron and X-ray powder diffraction patterns for MnO for

7 — 1.542 A. Peaks are assigned Miller indices for the cubic unit cells given. Neutron

data are adapted from Shull, Strauser and Wollan, Phys. Rev., 83,333, 1951. X-ray data
are from Powder Diffraction File, Card No. 7-230

slightly different in magnitude. Partial cancellation therefore occurs for the 200
and 220 reflections since Mn2* and O% . ions on the same planes scatter out of
phase with each other. This is precisely the opposite of the case with scattering
of X-rays, for which the scattering factors of all elements have the same sign
and therefore for the 200 and 220 reflections, Mn2* and O*~ scatter in phase
with each other.

Comparison of (a) and (b) shows that below Tn extra lines (asterisked)
appear in the neutron diffraction pattern. These extra lines are associated
with the antiferromagnetic superstructure. Although, as mentioned above, the
true symmetry of the antiferromagnetic structure is rhombohedral, to a first
approximation it can be treated as cubic with cell dimensions that are twice the
value for the high temperature paramagnetic structure, ie.a=2885Aat80K
(< Tn) whereas at 293 K (> Txn), a = 4.43 A. The volumes of the unit cells are
therefore. in the ratio of 8:1. The extra lines in the powder pattern of the
antiferromagnetic structure may be indexed as shown; observed reflections
are those for which A, k and / are odd.
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¢) Inelastic scattering, soft modes and phase transitions

‘Slow’ neutrons possess kinetic energy that is comparable to the thermal energy
levels in a solid. Such neutrons are inelastically scattered by phonons (i.c.
vibrational modes) in the solid. From an analysis of the energy of the scattered
neutrons, information on phonons and interatomic forces is obtained. For
magnetic materials, further information on their electron exchange energy is
obtained.

Displacive phase transitions are believed to be associated with the instability
of a lattice vibration. A certain type of vibrational mode in the low temperature
structure effectively collapses at the critical temperature. Such modes are called
soft modes. They may be studied by IR and Raman spectroscopy, provided the
vibrations involved are spectroscopically active, and also by neutron scattering.
The latter technique is useful since it is not limited by the spectroscopic selec-
tion rules; by measuring the inelastic scattering about a number of ‘Bragg
reflections’, the atomic displacements that are responsible for the soft mode
and the phase transition may be determined. For instance, the mechanism of
the displacive transition in quartz, SiO;, at 573°C has been analysed by record-
ing the neutron spectra at several temperatures below and above 573°C.



